Supplemental Method We examined the effect of different V_0 in determining β , Eed as described previously [25]. We derived V_0 ' by calculating the X-intercept of the ESPVR line passing through (ESV obtained from CMR, ESP_{modified}), (EDV obtained from CMR, Pmax) (Figure 1B). The average V_0 ' was 12.8 mL (IQR: -5.8-31.4 mL). The β and Eed were calculated under the assumption that $V_0 = 0$ ($\beta_{V_0=0}$ and Eed_{V_0=0}), which were derived from estimated EDPVR using [(0,0), (ESV obtained from CMR, 1), (EDV obtained from CMR, normalized RVEDP)] described in the Methods section. We also calculated β_{V_0} and Eed_{V_0} by using (V_0 ', 0) instead of (0, 0) when approximating EDPVR (Figure 1C). We compared $\beta_{V_0=0}$ and Eed_{V_0=0} with β_{V_0} and Eed_{V_0} to examine the impact of different V_0 on calculating β and Eed. Supplemental Figure 1; (A) Scatter plot of $\beta_{V_0=0}$ and β_{V_0} , (B) Scatter plot of $Eed_{V_0=0}$ and Eed_{V_0} . Significant correlations were obtained for both β and Eed (β : R = 0.99, p < 0.0001, Eed: R = 1.00, p < 0.0001). β, diastolic stiffness coefficient; Eed, end-diastolic elastance; EDPVR, end-diastolic pressure-volume relationship; ESV, end-systolic volume; CMR, cardiac magnetic resonance imaging; RVEDP, right ventricular end-diastolic pressure.